霽彩華年,因夢同行—— 慶祝深圳霽因生物醫(yī)藥轉(zhuǎn)化研究院成立十周年 情緒益生菌PS128助力孤獨(dú)癥治療,權(quán)威研究顯示可顯著改善孤獨(dú)癥癥狀 PARP抑制劑氟唑帕利助力患者從維持治療中獲益,改寫晚期卵巢癌治療格局 新東方智慧教育發(fā)布“東方創(chuàng)科人工智能開發(fā)板2.0” 精準(zhǔn)血型 守護(hù)生命 腸道超聲可用于檢測兒童炎癥性腸病 迷走神經(jīng)刺激對抑郁癥有積極治療作用 探索梅尼埃病中 MRI 描述符的性能和最佳組合 自閉癥患者中癡呆癥的患病率增加 超聲波 3D 打印輔助神經(jīng)源性膀胱的骶神經(jīng)調(diào)節(jié) 胃食管反流病患者耳鳴風(fēng)險增加 間質(zhì)性膀胱炎和膀胱疼痛綜合征的臨床表現(xiàn)不同 研究表明 多語言能力可提高自閉癥兒童的認(rèn)知能力 科學(xué)家揭示人類與小鼠在主要癌癥免疫治療靶點(diǎn)上的驚人差異 利用正確的成像標(biāo)準(zhǔn)改善對腦癌結(jié)果的預(yù)測 地中海飲食通過腸道細(xì)菌變化改善記憶力 讓你在 2025 年更健康的 7 種驚人方法 為什么有些人的頭發(fā)和指甲比其他人長得快 物質(zhì)的使用會改變大腦的結(jié)構(gòu)嗎 飲酒如何影響你的健康 20個月,3大平臺,300倍!元育生物以全左旋蝦青素引領(lǐng)合成生物新紀(jì)元 從技術(shù)困局到創(chuàng)新錨點(diǎn),天與帶來了一場屬于養(yǎng)老的“情緒共振” “華潤系”大動作落槌!昆藥集團(tuán)完成收購華潤圣火 十七載“冬至滋補(bǔ)節(jié)”,東阿阿膠將品牌營銷推向新高峰 150個國家承認(rèn)巴勒斯坦國意味著什么 中國海警對非法闖仁愛礁海域菲船只采取管制措施 國家四級救災(zāi)應(yīng)急響應(yīng)啟動 涉及福建、廣東 女生查分查出608分后,上演取得理想成績“三件套” 多吃紅色的櫻桃能補(bǔ)鐵、補(bǔ)血? 中國代表三次回?fù)裘婪焦糁肛?zé) 探索精神健康前沿|情緒益生菌PS128閃耀寧波醫(yī)學(xué)盛會,彰顯科研實(shí)力 圣美生物:以科技之光,引領(lǐng)肺癌早篩早診新時代 神經(jīng)干細(xì)胞移植有望治療慢性脊髓損傷 一種簡單的血漿生物標(biāo)志物可以預(yù)測患有肥胖癥青少年的肝纖維化 嬰兒的心跳可能是他們說出第一句話的關(guān)鍵 研究發(fā)現(xiàn)基因檢測正成為主流 血液測試顯示心臟存在排斥風(fēng)險 無需提供組織樣本 假體材料有助于減少靜脈導(dǎo)管感染 研究發(fā)現(xiàn)團(tuán)隊(duì)運(yùn)動對孩子的大腦有很大幫助 研究人員開發(fā)出診斷 治療心肌炎的決策途徑 兩項(xiàng)研究評估了醫(yī)療保健領(lǐng)域人工智能工具的發(fā)展 利用女子籃球隊(duì)探索足部生物力學(xué) 抑制前列腺癌細(xì)胞:雄激素受體可以改變前列腺的正常生長 肽抗原上的反應(yīng)性半胱氨酸可能開啟新的癌癥免疫治療可能性 研究人員發(fā)現(xiàn)新基因療法可以緩解慢性疼痛 研究人員揭示 tisa-cel 療法治療復(fù)發(fā)或難治性 B 細(xì)胞淋巴瘤的風(fēng)險 適量飲酒可降低高危人群罹患嚴(yán)重心血管疾病的風(fēng)險 STIF科創(chuàng)節(jié)揭曉獎項(xiàng),新東方智慧教育榮膺雙料殊榮 中科美菱發(fā)布2025年產(chǎn)品戰(zhàn)略布局!技術(shù)方向支撐產(chǎn)品生態(tài)縱深! 從雪域高原到用戶口碑 —— 復(fù)方塞隆膠囊的品質(zhì)之旅
您的位置:首頁 >要聞 >

羅氏幾何第一章(羅氏幾何)

關(guān)于羅氏幾何第一章,羅氏幾何這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!

1、羅巴切夫斯基幾何學(xué)的公理系統(tǒng)和歐氏幾何學(xué)不同的地方僅僅是把歐氏幾何中“一對分散直線在其唯一公垂線兩側(cè)無限遠(yuǎn)離”這一幾何平行公理用“從直線外一點(diǎn),至少可以做兩條直線和這條直線平行”來代替,其他公理基本相同。

2、由于平行公理不同,經(jīng)過演繹推理卻引出了一連串和歐式幾何內(nèi)容不同的新的幾何命題。

3、我們知道,羅巴切夫斯基幾何除了一個平行公理之外采用了歐氏幾何的一切公理。

4、因此,凡是不涉及到平行公理的幾何命題,在歐氏幾何中如果是正確的,在羅氏幾何中也同樣是正確的。

5、在歐氏幾何中,凡涉及到平行公理的命題,在羅巴切夫斯基幾何中都不成立,他們都相應(yīng)地含有新的意義。

6、下面舉幾個例子加以說明:歐氏幾何: 同一直線的垂線和斜線相交。

7、 垂直于同一直線的兩條直線平行。

8、 存在相似的多邊形。

9、 過不在同一直線上的三點(diǎn)可以做且僅能做一個圓。

10、 羅巴切夫斯基幾何:同一直線的垂線和斜線不一定相交。

11、 垂直于同一直線的兩條直線,當(dāng)兩端延長的時候,離散到無窮。

12、 不存在相似的多邊形。

13、 過不在同一直線上的三點(diǎn),不一定能做一個圓。

14、 從上面所列舉得羅巴切夫斯基幾何的一些命題可以看到,這些命題和我們所習(xí)慣的直觀形象有矛盾。

15、所以羅巴切夫斯基幾何中的一些幾何事實(shí)沒有象歐氏幾何那樣容易被接受。

16、但是,數(shù)學(xué)家們經(jīng)過研究,提出可以用我們習(xí)慣的歐氏幾何中的事實(shí)作一個直觀“模型”來解釋羅氏幾何是正確的。

17、1868年,意大利數(shù)學(xué)家貝特拉米發(fā)表了一篇著名論文《非歐幾何解釋的嘗試》,證明非歐幾何可以在歐幾里得空間的曲面(例如擬球曲面)上實(shí)現(xiàn)。

18、這就是說,非歐幾何命題可以“翻譯”成相應(yīng)的歐幾里得幾何命題,如果歐幾里得幾何沒有矛盾,非歐幾何也就自然沒有矛盾。

19、人們既然承認(rèn)歐氏幾何是沒有矛盾的,所以也就自然承認(rèn)非歐幾何沒有矛盾了。

20、直到這時,長期無人問津的非歐幾何才開始獲得學(xué)術(shù)界的普遍注意和深入研究,羅巴切夫斯基的獨(dú)創(chuàng)性研究也就由此得到學(xué)術(shù)界的高度評價和一致贊美,他本人則被人們贊譽(yù)為“幾何學(xué)中的哥白尼”。

本文分享完畢,希望對大家有所幫助。

標(biāo)簽:

免責(zé)聲明:本文由用戶上傳,與本網(wǎng)站立場無關(guān)。財經(jīng)信息僅供讀者參考,并不構(gòu)成投資建議。投資者據(jù)此操作,風(fēng)險自擔(dān)。 如有侵權(quán)請聯(lián)系刪除!

最新文章