關(guān)于液體壓強(qiáng)的計算公式及單位,關(guān)于液體壓強(qiáng)計算公式這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、是的,由P=F/S是可以推導(dǎo)出 P=ρ*g*h,但這是在液體容器為規(guī)則均勻的柱體容器的前提下推導(dǎo)出來的,所以公式 P=F/S的使用條件僅適用于這種柱體容器。
2、但 P=ρ*g*h這個公式根據(jù)液體本身的特性(易流性,連通器原理、帕斯卡定律等)可以推廣到任意形狀的容器,只要是連通的密度均勻的液體都可以用。
3、其實(shí)液體內(nèi)部壓強(qiáng)公式的推導(dǎo)完全可以不用公式P=F/S來推導(dǎo),而是用更加普遍、更加一般的方法——質(zhì)量力的勢函數(shù)的積分來推導(dǎo),只是因?yàn)檫@已超出中學(xué)的教學(xué)大綱了。
4、 補(bǔ)充說明:非直立柱體時液體對容器底部的壓強(qiáng),可用P=ρgh計算,不能用P=G/S計算;非直立柱體時液體對容器底部的壓力,可用F=PS=ρghS計算。
5、因?yàn)橥瑢W(xué)對這個問題疑問較多,對P=F/S和P=ρgh兩個公式簡單說明如下:由P=F/S是可以推導(dǎo)出液體壓強(qiáng)公式 P=ρgh,但這是在液體容器為規(guī)則均勻的柱體容器的前提下推導(dǎo)出來的,所以公式 P=F/S的使用條件僅適用于這種柱體容器(這一點(diǎn)與固體不同,固體間的壓強(qiáng)總是可以用P=F/S來計算)。
6、但 P=ρgh這個公式根據(jù)液體本身的特性(易流性,連通器原理、帕斯卡定律等)可以推廣到任意形狀的容器,只要是連通的密度均勻的液體都可以用。
7、其實(shí)液體內(nèi)部壓強(qiáng)公式的推導(dǎo)完全可以不用公式P=F/S來推導(dǎo),而是用更加普遍、更加一般的方法——質(zhì)量力的勢函數(shù)的積分來推導(dǎo),只是這已超出中學(xué)的教學(xué)大綱了。
8、由于液體的易流性和不可拉性,靜止的液體內(nèi)部沒有拉應(yīng)力和切應(yīng)力,只能有壓應(yīng)力(即壓強(qiáng)),在靜止的液體內(nèi)部任意取出微小一個六面體,這個六面體在六個面的壓力和本身的重力共同作用下處于平衡狀態(tài),設(shè)想這個六面體無限縮小時,其重力可以忽略不計,就得出作用在同一點(diǎn)上的各個方向的壓強(qiáng)相等,即壓強(qiáng)僅僅與位置坐標(biāo)有關(guān),而與方位無關(guān)。
9、即 P=f(x,y,z)。
10、再設(shè)想坐標(biāo)x-O-y處在水平面上,z為豎直向下的坐標(biāo)。
11、液體的壓強(qiáng)是由液體的質(zhì)量力引起的,當(dāng)液體對地球來說是靜止時,就是由重力引起的,液體質(zhì)量m=1的液體單位質(zhì)量力在各坐標(biāo)的分量為X=0、Y=0、Z=g,液體內(nèi)部的壓強(qiáng)與質(zhì)量力的微分關(guān)系為dP=ρ(XdxYdy+Zdz)=ρ(0*dx+0*dy+gdz)=ρgdz (從本方程看出在同一水平面上沒有壓強(qiáng)差,水平面是等壓面,即前后左右壓強(qiáng)都相等,壓強(qiáng)僅在重力方向上有變化)。
12、從水面z=0到水深z=h積分上式得 P=ρgh。
13、液體壓強(qiáng)除了密度之外完全由深度決定,這個公式并沒限制液體的容器是什么形狀,只要是同一密度的連通的靜止液體都可適用!定律介紹編輯本段 帕斯卡發(fā)現(xiàn)了液體傳遞壓強(qiáng)的基本規(guī)律,這就是著名的帕斯卡定律.所有的液壓機(jī)械都是根據(jù)帕斯卡定律設(shè)計的,所以帕斯卡被稱為“液壓機(jī)之父”. 在幾百年前,帕斯卡注意到一些生活現(xiàn)象,如沒有灌水的水龍帶是扁的.水龍帶接到自來水龍頭上,灌進(jìn)水,就變成圓柱形了.如果水龍帶上有幾個眼,就會有水從小眼里噴出來,噴射的方向是向四面八方的.水是往前流的,為什么能把水龍帶撐圓? 通過觀察,帕斯卡設(shè)計了“帕斯卡球”實(shí)驗(yàn),帕斯卡球是一個壁上有許多小孔的空心球,球上連接一個圓筒,筒里有可以移動的活塞.把水灌進(jìn)球和筒里,向里壓活塞,水便從各個小孔里噴射出來了,成了一支“多孔水槍” 帕斯卡球的實(shí)驗(yàn)證明,液體能夠把它所受到的壓強(qiáng)向各個方向傳遞.通過觀察發(fā)現(xiàn)每個孔噴出去水的距離差不多,這說明,每個孔所受到的壓強(qiáng)都相同 帕斯卡通過“帕斯卡球”實(shí)驗(yàn),得出著名的帕斯卡定律:加在密閉液體任一部分的壓強(qiáng),必然按其原來的大小,由液體向各個方向傳遞。
14、 帕斯卡在1648年表演了一個著名的實(shí)驗(yàn):他用一個密閉的裝滿水的桶,在桶蓋上插入一根細(xì)長的管子,從樓房的陽臺上向細(xì)管子里灌水。
15、結(jié)果只用了幾杯水,就把桶壓裂了,桶里的水就從裂縫中流了出來。
16、原來由于細(xì)管子的容積較小,幾杯水灌進(jìn)去,其深度h很大。
17、這就是歷史上有名的帕斯卡桶裂實(shí)驗(yàn)。
18、 一個容器里的液體,對容器底部(或側(cè)壁)產(chǎn)生的壓力遠(yuǎn)大于液體自身的重量,這對許多人來說是不可思議的。
19、我們知道,物體受到力的作用產(chǎn)生壓力,而只要某物體對另一物體表面有壓力,就存在壓強(qiáng),同理,水由于受到重力作用對容器底部有壓力,因此水對容器底部存在壓強(qiáng)。
20、液體具有流動性,對容器壁有壓力,因此液體對容器壁也存在壓強(qiáng)。
21、 在初中階段,液體壓強(qiáng)原理可表述為:“液體內(nèi)部向各個方向都有壓強(qiáng),壓強(qiáng)隨液體深度的增加而增大,同種液體在同一深度的各處,各個方向的壓強(qiáng)大小相等;不同的液體,在同一深度產(chǎn)生的壓強(qiáng)大小與液體的密度有關(guān),密度越大,液體的壓強(qiáng)越大。
22、” 特點(diǎn):加在封閉液體上的壓強(qiáng)能夠大小不變地被液體向各個方向傳遞。
23、 同種液體在同一深度液體向各個方向的壓強(qiáng)都相等。
24、 公式:液體壓強(qiáng):p=ρgh 固體壓強(qiáng):p=f 除以s2 液體壓強(qiáng)編輯本段2.1 重力因素 1.液體壓強(qiáng)產(chǎn)生的原因是由于液體受重力的作用。
25、若液體在失重的情況下,將無壓強(qiáng)可言。
26、2.2 特點(diǎn) 2.由于液體具有流動性,它所產(chǎn)生的壓強(qiáng)具有如下幾個特點(diǎn) (1)液體除了對容器底部產(chǎn)生壓強(qiáng)外,還對“限制”它流動的側(cè)壁產(chǎn)生壓強(qiáng)。
27、固體則只對其支撐面產(chǎn)生壓強(qiáng),方向總是與支撐面垂直。
28、 (2)在液體內(nèi)部向各個方向都有壓強(qiáng),在同一深度向各個方向的壓強(qiáng)都相等。
29、同種液體,深度越深,壓強(qiáng)越大 (3)計算液體壓強(qiáng)的公式是P=ρgh。
30、可見,液體壓強(qiáng)的大小只取決于液體的種類(即密度ρ)和深度h,而和液體的質(zhì)量、體積沒有直接的關(guān)系。
31、 (4)密閉容器內(nèi)的液體能把它受到的壓強(qiáng)按原來的大小向各個方向傳遞。
32、2.3 液體壓強(qiáng)與重力的關(guān)系 3.容器底部受到液體的壓力跟液體的重力不一定相等。
33、容器底部受到液體的壓力F=PS=ρghS,其中“h”底面積為S,“hS”為高度為h的液柱的體積,“ρghS”是這一液柱的重力。
34、因?yàn)橐后w有可能傾斜放置。
35、 所以,容器底部受到的壓力其大小可能等于,也可能大于或小于液體本身的重力。
36、若杯為上小下大,則液體對杯底的壓力大于液體本身的重力。
37、若杯為上大下小,則液體對杯底的壓力小于液體本身的重力。
38、若杯上下部分大小相等,則液體對杯底的壓力等于液體本身的重力。
39、 在U型玻璃管內(nèi)盛了有色的水,玻璃管一端用橡皮管連接一個開有小孔的金屬盒,金屬盒上蒙有一層橡皮模。
40、未對橡皮管加壓時,U型兩管中的水面在同一高度上,用力壓橡皮模時,跟盒相連的管中壓強(qiáng)變大,水面就下降,另一管中水面上升。
41、加在橡皮模上的壓強(qiáng)越大,兩管中水面的高度差就越大。
42、 把壓強(qiáng)計的金屬盒放入水中時,根據(jù)兩管中水面的高度差就可以反應(yīng)橡皮模受到水的壓強(qiáng)的大小了。
43、2.4 同種 各個方向都有壓強(qiáng) 2、同一深度處,壓強(qiáng)一致 3、深度越大,壓強(qiáng)越大2.5 不同 同一深度,密度越大,壓強(qiáng)越大 公式:P=ρgh 式中g(shù)=9.8N/kg 或g=10N/kg, h的單位是m , ρ的單位是kg/m^3; , 壓強(qiáng)P的單位是Pa.。
44、 如果題中沒有明確提出g等于幾,應(yīng)用g=9.8N/kg,再就是題后邊基本上都有括號,括號的內(nèi)容就是g和ρ的值。
45、 公式推導(dǎo): 壓強(qiáng)公式均可由基礎(chǔ)公式:P=F/S推導(dǎo) P液=F/S=G/S=mg/S=ρ液Vg/S=ρ液Shg/S=ρ液hg=ρ液gh 由于液體內(nèi)部同一深度處向各個方向的壓強(qiáng)都相等,所以我們只要算出液體豎直向下的壓強(qiáng),也就同時知道了在這一深度處液體向各個方向的壓強(qiáng)。
46、這個公式定量地給出了液體內(nèi)部壓強(qiáng)地規(guī)律。
47、 深度是指點(diǎn)到自由液面的距離,液體的壓強(qiáng)只與深度和液體的密度有關(guān),與液體的質(zhì)量無關(guān). 液體壓強(qiáng)產(chǎn)生原因:受重力、且有流動性3 相關(guān)測量編輯本段 液U形管壓強(qiáng)計體壓強(qiáng)的測量 液體壓強(qiáng)的測量儀器叫“U形管壓強(qiáng)計”,利用液體壓強(qiáng)公式p=ρhg,h為兩液面的高度差,計算液面差產(chǎn)生的壓強(qiáng)就等于液體內(nèi)部壓強(qiáng) 公式:F1/S1=F2/S2 非直立柱體時液體對容器底部的壓強(qiáng),可用P=ρgh計算,不能用P=G/S計算;非直立柱體時液體對容器底部的壓力,可用F=PS=ρghS計算。
48、因?yàn)橥瑢W(xué)對這個問題疑問較多,對P=F/S和P=ρgh兩個公式簡單說明如下:由P=F/S是可以推導(dǎo)出液體壓強(qiáng)公式 P=ρgh,但這是在液體容器為規(guī)則均勻的柱體容器的前提下推導(dǎo)出來的,所以公式 P=F/S的使用條件僅適用于這種柱體容器(這一點(diǎn)與固體不同,固體間的壓強(qiáng)總是可以用P=F/S來計算)。
49、但 P=ρgh這個公式根據(jù)液體本身的特性(易流性,連通器原理、帕斯卡定律等)可以推廣到任意形狀的容器,只要是連通的密度均勻的液體都可以用。
50、其實(shí)液體內(nèi)部壓強(qiáng)公式的推導(dǎo)完全可以不用公式P=F/S來推導(dǎo),而是用更加普遍、更加一般的方法——質(zhì)量力的勢函數(shù)的積分來推導(dǎo),只是這已超出中學(xué)的教學(xué)大綱了。
51、由于液體的易流性和不可拉性,靜止的液體內(nèi)部沒有拉應(yīng)力和切應(yīng)力,只能有壓應(yīng)力(即壓強(qiáng)),在靜止的液體內(nèi)部任意取出微小一個六面體,這個六面體在六個面的壓力和本身的重力共同作用下處于平衡狀態(tài),設(shè)想這個六面體無限縮小時,其重力可以忽略不計,就得出作用在同一點(diǎn)上的各個方向的壓強(qiáng)相等,即壓強(qiáng)僅僅與位置坐標(biāo)有關(guān),而與方位無關(guān)。
52、即 P=f(x,y,z)。
53、再設(shè)想坐標(biāo)x-O-y處在水平面上,z為豎直向下的坐標(biāo)。
54、液體的壓強(qiáng)是由液體的質(zhì)量力引起的,當(dāng)液體對地球來說是靜止時,就是由重力引起的,液體質(zhì)量m=1的液體單位質(zhì)量力在各坐標(biāo)的分量為X=0、Y=0、Z=g,液體內(nèi)部的壓強(qiáng)與質(zhì)量力的微分關(guān)系為dP=ρ(XdxYdy+Zdz)=ρ(0*dx+0*dy+gdz)=ρgdz (從本方程看出在同一水平面上沒有壓強(qiáng)差,水平面是等壓面,即前后左右壓強(qiáng)都相等,壓強(qiáng)僅在重力方向上有變化)。
55、從水面z=0到水深z=h積分上式得 P=ρgh。
56、 影響液體壓強(qiáng)的因素:深度,液體的密度(與容器的形狀,液體的質(zhì)量體積無關(guān))。
本文分享完畢,希望對大家有所幫助。
標(biāo)簽:
免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!