霽彩華年,因夢同行—— 慶祝深圳霽因生物醫(yī)藥轉(zhuǎn)化研究院成立十周年 情緒益生菌PS128助力孤獨癥治療,權(quán)威研究顯示可顯著改善孤獨癥癥狀 PARP抑制劑氟唑帕利助力患者從維持治療中獲益,改寫晚期卵巢癌治療格局 新東方智慧教育發(fā)布“東方創(chuàng)科人工智能開發(fā)板2.0” 精準血型 守護生命 腸道超聲可用于檢測兒童炎癥性腸病 迷走神經(jīng)刺激對抑郁癥有積極治療作用 探索梅尼埃病中 MRI 描述符的性能和最佳組合 自閉癥患者中癡呆癥的患病率增加 超聲波 3D 打印輔助神經(jīng)源性膀胱的骶神經(jīng)調(diào)節(jié) 胃食管反流病患者耳鳴風險增加 間質(zhì)性膀胱炎和膀胱疼痛綜合征的臨床表現(xiàn)不同 研究表明 多語言能力可提高自閉癥兒童的認知能力 科學家揭示人類與小鼠在主要癌癥免疫治療靶點上的驚人差異 利用正確的成像標準改善對腦癌結(jié)果的預(yù)測 地中海飲食通過腸道細菌變化改善記憶力 讓你在 2025 年更健康的 7 種驚人方法 為什么有些人的頭發(fā)和指甲比其他人長得快 物質(zhì)的使用會改變大腦的結(jié)構(gòu)嗎 飲酒如何影響你的健康 20個月,3大平臺,300倍!元育生物以全左旋蝦青素引領(lǐng)合成生物新紀元 從技術(shù)困局到創(chuàng)新錨點,天與帶來了一場屬于養(yǎng)老的“情緒共振” “華潤系”大動作落槌!昆藥集團完成收購華潤圣火 十七載“冬至滋補節(jié)”,東阿阿膠將品牌營銷推向新高峰 150個國家承認巴勒斯坦國意味著什么 中國海警對非法闖仁愛礁海域菲船只采取管制措施 國家四級救災(zāi)應(yīng)急響應(yīng)啟動 涉及福建、廣東 女生查分查出608分后,上演取得理想成績“三件套” 多吃紅色的櫻桃能補鐵、補血? 中國代表三次回擊美方攻擊指責 探索精神健康前沿|情緒益生菌PS128閃耀寧波醫(yī)學盛會,彰顯科研實力 圣美生物:以科技之光,引領(lǐng)肺癌早篩早診新時代 神經(jīng)干細胞移植有望治療慢性脊髓損傷 一種簡單的血漿生物標志物可以預(yù)測患有肥胖癥青少年的肝纖維化 嬰兒的心跳可能是他們說出第一句話的關(guān)鍵 研究發(fā)現(xiàn)基因檢測正成為主流 血液測試顯示心臟存在排斥風險 無需提供組織樣本 假體材料有助于減少靜脈導管感染 研究發(fā)現(xiàn)團隊運動對孩子的大腦有很大幫助 研究人員開發(fā)出診斷 治療心肌炎的決策途徑 兩項研究評估了醫(yī)療保健領(lǐng)域人工智能工具的發(fā)展 利用女子籃球隊探索足部生物力學 抑制前列腺癌細胞:雄激素受體可以改變前列腺的正常生長 肽抗原上的反應(yīng)性半胱氨酸可能開啟新的癌癥免疫治療可能性 研究人員發(fā)現(xiàn)新基因療法可以緩解慢性疼痛 研究人員揭示 tisa-cel 療法治療復發(fā)或難治性 B 細胞淋巴瘤的風險 適量飲酒可降低高危人群罹患嚴重心血管疾病的風險 STIF科創(chuàng)節(jié)揭曉獎項,新東方智慧教育榮膺雙料殊榮 中科美菱發(fā)布2025年產(chǎn)品戰(zhàn)略布局!技術(shù)方向支撐產(chǎn)品生態(tài)縱深! 從雪域高原到用戶口碑 —— 復方塞隆膠囊的品質(zhì)之旅
您的位置:首頁 >行業(yè)動態(tài) >

科學家開發(fā)方法來探索全固態(tài)電池中難以捉摸的界面現(xiàn)象

鋰離子(Li-ion)電池的進步使各種便攜式設(shè)備變得可行,并推動了電子產(chǎn)品的發(fā)展。然而,傳統(tǒng)鋰離子電池的內(nèi)在缺點,其電池使用液體電解質(zhì)溶液,使其不完全適合電動汽車等備受期待的應(yīng)用。這些限制包括有限的耐用性、低容量、安全問題以及對其毒性和碳足跡的環(huán)境問題。幸運的是,科學家們現(xiàn)在正專注于解決所有這些問題的下一代解決方案:全固態(tài)電池。固體電解質(zhì)的使用使這種類型的電池更安全,并能夠保持更大的功率密度。

然而,這些電池的一個關(guān)鍵問題是電解質(zhì)-電極界面處的高電阻,這會降低全固態(tài)電池的輸出并阻止它們快速充電。這種高界面電阻背后的一個討論機制是雙電層 (EDL) 效應(yīng),它涉及在與電極的界面處從電解質(zhì)中收集帶電離子。這會產(chǎn)生一層正電荷或負電荷,進而導致相反符號的電荷以相等的密度在整個電極上累積,從而形成雙層電荷。檢測和測量全固態(tài)電池中的 EDL 的問題在于,傳統(tǒng)的電化學分析方法無法解決問題。

在東京理科大學,由 Tohru Higuchi 副教授領(lǐng)導的科學家們使用一種全新的方法來評估全固態(tài)電池的固體電解質(zhì)中的 EDL 效應(yīng),從而解決了這個難題。是與國立材料科學研究所國際材料納米結(jié)構(gòu)中心 (MANA) 首席研究員 Takashi Tsuchiya 和同一組織的 MANA 首席研究員 Kazuya Terabe 合作進行的.

新方法圍繞使用氫化金剛石和固體鋰基電解質(zhì)制成的場效應(yīng)晶體管 (FET) 展開。FET 是一種三端晶體管,其中源極和漏極之間的電流可以通過在柵極上施加電壓來控制。由于 FET 的半導體區(qū)域中產(chǎn)生的電場,該電壓控制電子或空穴(帶正電荷的“電子空位”)的密度。通過利用這些特性并使用化學惰性的金剛石通道,科學家們排除了影響通道導電性的化學還原氧化效應(yīng),只留下由于 EDL 效應(yīng)積累的靜電荷作為必要原因。

因此,科學家們在金剛石電極上進行了霍爾效應(yīng)測量,該測量僅對材料表面上的帶電載流子敏感。他們使用了不同類型的鋰基電解質(zhì),并研究了它們的成分如何影響 EDL。通過他們的分析,他們揭示了 EDL 效應(yīng)的一個重要方面:它由界面附近(約 5 納米厚)的電解質(zhì)組成決定。如果電解質(zhì)材料允許發(fā)生電荷補償?shù)倪€原-氧化反應(yīng),則 EDL 效應(yīng)可以被抑制幾個數(shù)量級。“事實證明,我們的新技術(shù)有助于揭示固體電解質(zhì)界面附近 EDL 行為的各個方面,并有助于闡明界面特性對全固態(tài)鋰離子電池和其他離子設(shè)備性能的影響,”樋口博士強調(diào)說。

標簽:

免責聲明:本文由用戶上傳,與本網(wǎng)站立場無關(guān)。財經(jīng)信息僅供讀者參考,并不構(gòu)成投資建議。投資者據(jù)此操作,風險自擔。 如有侵權(quán)請聯(lián)系刪除!

最新文章