關(guān)于幾何定理和證題pdf 許莼舫,幾何定理這個(gè)問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、★勾股定理(畢達(dá)哥拉斯定理) ★2、射影定理(歐幾里得定理) ★3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分 4、四邊形兩邊中心的連線和兩條對(duì)角線中心的連線交于一點(diǎn) 5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。
2、 ★6、三角形各邊的垂直平分線交于一點(diǎn)。
3、 ★7、從三角形的各頂點(diǎn)向其對(duì)邊所作的三條垂線交于一點(diǎn) 8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足不L,則AH=2OL 9、三角形的外心,垂心,重心在同一條直線上。
4、 10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫?qǐng)A)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上, 1歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上 12、庫立奇大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓) 圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。
5、 ★13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式: ,s為三角形周長的一半 ★14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn) 15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2) 16、斯圖爾特定理:P將三角形ABC的邊BC分成m和n兩段,則有n×AB2+m×AC2=BC×(AP2+mn) 17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對(duì)角線互相垂直時(shí),連接AB中點(diǎn)M和對(duì)角線交點(diǎn)E的直線垂直于CD 18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上 ★19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC×BD ★20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形, 2愛爾可斯定理1:若△ABC和△DEF都是正三角形,則由線段AD、BE、CF的重心構(gòu)成的三角形也是正三角形。
6、 22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。
7、 ★23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長線和一條不經(jīng)過它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有 BP/PC×CQ/QA×AR/RB=1 ★24、梅涅勞斯定理的逆定理:(略) ★25、梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線。
8、 ★26、梅涅勞斯定理的應(yīng)用定理2:過任意△ABC的三個(gè)頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線 ★27、塞瓦定理:設(shè)△ABC的三個(gè)頂點(diǎn)A、B、C的不在三角形的邊或它們的延長線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長線交于點(diǎn)P、Q、R,則BP/PC×CQ/QA×AR/RB=1. ★28、塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)BE和CD交于S,則AS一定過邊BC的中心M ★29、塞瓦定理的逆定理:(略) ★30、塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn) ★3塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點(diǎn)R、S、T,則AR、BS、CT交于一點(diǎn)。
9、 ★32、西摩松定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線) ★33、西摩松定理的逆定理:(略) 34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時(shí)關(guān)于△ABC的點(diǎn)P的西摩松線通過線段PH的中心。
10、 35、史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點(diǎn)P的關(guān)于邊BC、CA、AB的對(duì)稱點(diǎn)和△ABC的垂心H同在一條(與西摩松線平行的)直線上。
11、這條直線被叫做點(diǎn)P關(guān)于△ABC的鏡象線。
12、 36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=360°的倍數(shù) 37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn) 38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn)。
13、 39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn) 40、波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個(gè)圓上,這時(shí)L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn)。
14、 4關(guān)于西摩松線的定理1:△ABC的外接圓的兩個(gè)端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上。
15、 42、關(guān)于西摩松線的定理2(安寧定理):在一個(gè)圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn)。
16、 43、卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。
17、 44、奧倍爾定理:通過△ABC的三個(gè)頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓取一點(diǎn)P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。
18、45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),QU、QV、QW和邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。
19、46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對(duì)反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),如果QU、QV、QW與邊BC、CA、AB或其延長線的交點(diǎn)分別為ED、E、F,則D、E、F三點(diǎn)共線。
20、(反點(diǎn):P、Q分別為圓O的半徑OC和其延長線的兩點(diǎn),如果OC2=OQ×OP 則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn)) 47、朗古來定理:在同一圓同上有A1B1C1D14點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個(gè)三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個(gè)垂足在同一條直線上。
21、 48、從三角形各邊的中點(diǎn),向這條邊所的頂點(diǎn)處的外接圓的切線引垂線,這些垂線交于該三角形的九點(diǎn)圓的圓心。
22、 49、一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-1個(gè)點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn)。
23、 50、康托爾定理1:一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-2個(gè)點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn)。
24、 5康托爾定理2:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個(gè)三角形△BCD、△CDA、△DAB、△ABC中的每一個(gè)的兩條西摩松的交點(diǎn)在同一直線上。
25、這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線。
26、 52、康托爾定理3:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線交于一點(diǎn)。
27、這個(gè)點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn)。
28、 53、康托爾定理4:一個(gè)圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個(gè)康托爾點(diǎn)在一條直線上。
29、這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線。
30、 54、費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切。
31、 55、莫利定理:將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。
32、這個(gè)三角形常被稱作莫利正三角形。
33、 56、牛頓定理1:四邊形兩條對(duì)邊的延長線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三條共線。
34、這條直線叫做這個(gè)四邊形的牛頓線。
35、 57、牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。
36、 58、笛沙格定理1:平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線。
37、 59、笛沙格定理2:相異平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線。
38、 60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對(duì)的頂點(diǎn)A和D、B和E、C和F,則這三線共點(diǎn)。
39、 6巴斯加定理:圓內(nèi)接六邊形ABCDEF相對(duì)的邊AB和DE、BC和EF、CD和FA的(或延長線的)交點(diǎn)共線。
本文分享完畢,希望對(duì)大家有所幫助。
標(biāo)簽:
免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請(qǐng)聯(lián)系刪除!