關(guān)于橢圓雙曲線焦半徑結(jié)論,橢圓雙曲線中焦點三角形的面積公式大致推導(dǎo)過程這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、橢圓面積:設(shè)橢圓方程為:x^2/a^2+y^2/b^2=1,FF2分別是橢圓的左右焦點,P是橢圓上任意一點,PF1和PF2夾角為θ。
2、在△PF1F2中,根據(jù)余弦定理,F(xiàn)1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cosθ|PF1|+|PF2|=2a,|F1F2}=2c,4c^2=(PF1+PF2)^2-2|PF1||PF2|-2|PF1|*|PF2|cosθ4c^2=4a^2-2|PF1||PF2|(1+cosθ),|PF1||PF2|=2(a^2-c^2)/(1+cosθ)=2b^2/(1+cosθ),S△PF1F2=(1/2)|PF1||PF2|sinθ=b^2sinθ/(1+cosθ)=b^2*(2sinθ/2cosθ/2)/[2(cosθ/2)^2]=b^2tan(θ/2).∴S△PF1F2=b^2tan(θ/2).2、雙曲線面積:設(shè)雙曲線方程為:x^2/a^2-y^2/b^2=1,FF2分別是雙曲線的左右焦點。
3、P是雙曲線上任意一點,PF1和PF2夾角為θ,在△PF1F2中。
4、根據(jù)余弦定理,F(xiàn)1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cosθ,||PF1|-|PF2||=2a,|F1F2}=2c,4c^2=(PF1-PF2)^2+2|PF1|*|PF2|-2|PF1|*|PF2|cosθ,4c^2=4a^2+2|PF1|*|PF2|(1-cosθ)|PF1|*|PF2|(1-cosθ)=2(c^2-a^2)=2b^2,|PF1|*|PF2|=2b^2/(1-cosθ),S△PF1F2=(1/2)|PF1||PF2|sinθ=b^2sinθ/(1-cosθ)=b^2*(2sinθ/2cosθ/2)/[2(sinθ/2)^2]=b^2*cos(θ/2)/[sin(θ/2)]=b^2cot(θ/2).cosθθθθ。
本文分享完畢,希望對大家有所幫助。
標(biāo)簽:
免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!