關(guān)于數(shù)模優(yōu)秀論文模板,數(shù)模優(yōu)秀論文這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、數(shù)學建模論文范文--利用數(shù)學建模解數(shù)學應用題數(shù)學建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應用領域越來越廣泛,人們身邊的數(shù)學內(nèi)容越來越豐富。
2、強調(diào)數(shù)學應用及培養(yǎng)應用數(shù)學意識對推動素質(zhì)教育的實施意義十分巨大。
3、數(shù)學建模在數(shù)學教育中的地位被提到了新的高度,通過數(shù)學建模解數(shù)學應用題,提高學生的綜合素質(zhì)。
4、本文將結(jié)合數(shù)學應用題的特點,把怎樣利用數(shù)學建模解好數(shù)學應用問題進行剖析,希望得到同仁的幫助和指正。
5、 一、數(shù)學應用題的特點 我們常把來源于客觀世界的實際,具有實際意義或?qū)嶋H背景,要通過數(shù)學建模的方法將問題轉(zhuǎn)化為數(shù)學形式表示,從而獲得解決的一類數(shù)學問題叫做數(shù)學應用題。
6、數(shù)學應用題具有如下特點:第一、數(shù)學應用題的本身具有實際意義或?qū)嶋H背景。
7、這里的實際是指生產(chǎn)實際、社會實際、生活實際等現(xiàn)實世界的各個方面的實際。
8、如與課本知識密切聯(lián)系的源于實際生活的應用題;與模向?qū)W科知識網(wǎng)絡交匯點有聯(lián)系的應用題;與現(xiàn)代科技發(fā)展、社會市場經(jīng)濟、環(huán)境保護、實事政治等有關(guān)的應用題等。
9、 第二、數(shù)學應用題的求解需要采用數(shù)學建模的方法,使所求問題數(shù)學化,即將問題轉(zhuǎn)化成數(shù)學形式來表示后再求解。
10、 第三、數(shù)學應用題涉及的知識點多。
11、是對綜合運用數(shù)學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關(guān),很難將問題正確解答。
12、 第四、數(shù)學應用題的命題沒有固定的模式或類別。
13、往往是一種新穎的實際背景,難于進行題型模式訓練,用“題海戰(zhàn)術(shù)”無法解決變化多端的實際問題。
14、必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。
15、因此它具有廣闊的發(fā)展空間和潛力。
16、 二、數(shù)學應用題如何建模 建立數(shù)學模型是解數(shù)學應用題的關(guān)鍵,如何建立數(shù)學模型可分為以下幾個層次: 第一層次:直接建模。
17、 根據(jù)題設條件,套用現(xiàn)成的數(shù)學公式、定理等數(shù)學模型,注解圖為: 將題材設條件翻譯 成數(shù)學表示形式應用題 審題 題設條件代入數(shù)學模型 求解 選定可直接運用的 數(shù)學模型第二層次:直接建模。
18、可利用現(xiàn)成的數(shù)學模型,但必須概括這個數(shù)學模型,對應用題進行分析,然后確定解題所需要的具體數(shù)學模型或數(shù)學模型中所需數(shù)學量需進一步求出,然后才能使用現(xiàn)有數(shù)學模型。
19、第三層次:多重建模。
20、對復雜的關(guān)系進行提煉加工,忽略次要因素,建立若干個數(shù)學模型方能解決問題。
21、第四層次:假設建模。
22、要進行分析、加工和作出假設,然后才能建立數(shù)學模型。
23、如研究十字路口車流量問題,假設車流平穩(wěn),沒有突發(fā)事件等才能建模。
24、三、建立數(shù)學模型應具備的能力 從實際問題中建立數(shù)學模型,解決數(shù)學問題從而解決實際問題,這一數(shù)學全過程的教學關(guān)鍵是建立數(shù)學模型,數(shù)學建模能力的強弱,直接關(guān)系到數(shù)學應用題的解題質(zhì)量,同時也體現(xiàn)一個學生的綜合能力。
25、3.1提高分析、理解、閱讀能力。
26、 閱讀理解能力是數(shù)學建模的前提,數(shù)學應用題一般都創(chuàng)設一個新的背景,也針對問題本身使用一些專門術(shù)語,并給出即時定義。
27、如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了“減薄率”這一專門術(shù)語,并給出了即時定義,能否深刻理解,反映了自身綜合素質(zhì),這種理解能力直接影響數(shù)學建模質(zhì)量。
28、3.2強化將文字語言敘述轉(zhuǎn)譯成數(shù)學符號語言的能力。
29、 將數(shù)學應用題中所有表示數(shù)量關(guān)系的文字、圖象語言翻譯成數(shù)學符號語言即數(shù)、式子、方程、不等式、函數(shù)等,這種譯釋能力是數(shù)學建成模的基礎性工作。
30、例如:一種產(chǎn)品原來的成本為a元,在今后幾年內(nèi),計劃使成本平均每一年比上一年降低p%,經(jīng)過五年后的成本為多少? 將題中給出的文字翻譯成符號語言,成本y=a(1-p%)53.3增強選擇數(shù)學模型的能力。
31、 選擇數(shù)學模型是數(shù)學能力的反映。
32、數(shù)學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學能力的強弱。
33、建立數(shù)學模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。
34、結(jié)合教學內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學模型列表:函數(shù)建模類型 實際問題 一次函數(shù) 成本、利潤、銷售收入等 二次函數(shù) 優(yōu)化問題、用料最省問題、造價最低、利潤最大等 冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù) 細胞分裂、生物繁殖等 三角函數(shù) 測量、交流量、力學問題等 3.4加強數(shù)學運算能力。
35、 數(shù)學應用題一般運算量較大、較復雜,且有近似計算。
36、有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。
37、所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
38、 利用數(shù)學建模解數(shù)學應用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學生發(fā)散思維能力是很有益的,是提高學生素質(zhì),進行素質(zhì)教育的一條有效途徑。
39、同時數(shù)學建模的應用也是科學實踐,有利于實踐能力的培養(yǎng),是實施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
40、加強高中數(shù)學建模教學培養(yǎng)學生的創(chuàng)新能力摘要:通過對高中數(shù)學新教材的教學,結(jié)合新教材的編寫特點和高中研究性學習的開展,對如何加強高中數(shù)學建模教學,培養(yǎng)學生的創(chuàng)新能力方面進行探索。
41、 關(guān)鍵詞:創(chuàng)新能力;數(shù)學建模;研究性學習。
42、 《全日制普通高級中學數(shù)學教學大綱(試驗修訂版)》對學生提出新的教學要求,要求學生: (1)學會提出問題和明確探究方向; (2)體驗數(shù)學活動的過程; (3)培養(yǎng)創(chuàng)新精神和應用能力。
43、 其中,創(chuàng)新意識與實踐能力是新大綱中最突出的特點之一,數(shù)學學習不僅要在數(shù)學基礎知識,基本技能和思維能力,運算能力,空間想象能力等方面得到訓練和提高,而且在應用數(shù)學分析和解決實際問題的能力方面同樣需要得到訓練和提高,而培養(yǎng)學生的分析和解決實際問題的能力僅僅靠課堂教學是不夠的,必須要有實踐、培養(yǎng)學生的創(chuàng)新意識和實踐能力是數(shù)學教學的一個重要目的和一條基本原則,要使學生學會提出問題并明確探究方向,能夠運用已有的知識進行交流,并將實際問題抽象為數(shù)學問題,就必須建立數(shù)學模型,從而形成比較完整的數(shù)學知識結(jié)構(gòu)。
44、 數(shù)學模型是數(shù)學知識與數(shù)學應用的橋梁,研究和學習數(shù)學模型,能幫助學生探索數(shù)學的應用,產(chǎn)生對數(shù)學學習的興趣,培養(yǎng)學生的創(chuàng)新意識和實踐能力,加強數(shù)學建模教學與學習對學生的智力開發(fā)具有深遠的意義,現(xiàn)就如何加強高中數(shù)學建模教學談幾點體會。
45、 一.要重視各章前問題的教學,使學生明白建立數(shù)學模型的實際意義。
46、 教材的每一章都由一個有關(guān)的實際問題引入,可直接告訴學生,學了本章的教學內(nèi)容及方法后,這個實際問題就能用數(shù)學模型得到解決,這樣,學生就會產(chǎn)生創(chuàng)新意識,對新數(shù)學模型的渴求,實踐意識,學完要在實踐中試一試。
47、 如新教材“三角函數(shù)”章前提出:有一塊以O點為圓心的半圓形空地,要在這塊空地上劃出一個內(nèi)接矩形ABCD辟為綠冊,使其冊邊AD落在半圓的直徑上,另兩點BC落在半圓的圓周上,已知半圓的半徑長為a,如何選擇關(guān)于點O對稱的點A、D的位置,可以使矩形面積最大? 這是培養(yǎng)創(chuàng)新意識及實踐能力的好時機要注意引導,對所考察的實際問題進行抽象分析,建立相應的數(shù)學模型,并通過新舊兩種思路方法,提出新知識,激發(fā)學生的知欲,如不可挫傷學生的積極性,失去“亮點”。
48、 這樣通過章前問題教學,學生明白了數(shù)學就是學習,研究和應用數(shù)學模型,同時培養(yǎng)學生追求新方法的意識及參與實踐的意識。
49、因此,要重視章前問題的教學,還可據(jù)市場經(jīng)濟的建設與發(fā)展的需要及學生實踐活動中發(fā)現(xiàn)的問題,補充一些實例,強化這方面的教學,使學生在日常生活及學習中重視數(shù)學,培養(yǎng)學生數(shù)學建模意識。
50、 2.通過幾何、三角形測量問題和列方程解應用題的教學滲透數(shù)學建模的思想與思維過程。
51、 學習幾何、三角的測量問題,使學生多方面全方位地感受數(shù)學建模思想,讓學生認識更多現(xiàn)在數(shù)學模型,鞏固數(shù)學建模思維過程、教學中對學生展示建模的如下過程: 現(xiàn)實原型問題 數(shù)學模型 數(shù)學抽象 簡化原則 演算推理 現(xiàn)實原型問題的解 數(shù)學模型的解 反映性原則 返回解釋 列方程解應用題體現(xiàn)了在數(shù)學建模思維過程,要據(jù)所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利于解答的思想。
52、且解題過程中重要的步驟是據(jù)題意更出方程,從而使學生明白,數(shù)學建模過程的重點及難點就是據(jù)實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯(lián)想現(xiàn)成的數(shù)學模型或變換問題構(gòu)造新的數(shù)學模型來解決問題。
53、如利息(復利)的數(shù)列模型、利潤計算的方程模型決策問題的函數(shù)模型以及不等式模型等。
54、 3.結(jié)合各章研究性課題的學習,培養(yǎng)學生建立數(shù)學模型的能力,拓展數(shù)學建模形式的多樣性式與活潑性。
55、 高中新大綱要求每學期至少安排一個研究性課題,就是為了培養(yǎng)學生的數(shù)學建模能力,如“數(shù)列”章中的“分期付款問題”、“平面向是‘章中’向量在物理中的應用”等,同時,還可設計類似利潤調(diào)查、洽談、采購、銷售等問題。
56、設計了如下研究性問題。
57、 例1根據(jù)下表給出的數(shù)據(jù)資料,確定該國人口增長規(guī)律,預測該國2000年的人口數(shù)。
58、 時間(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990 人中數(shù)(百萬) 39 50 63 76 92 106 123 132 145 分析:這是一個確定人口增長模型的問題,為使問題簡化,應作如下假設:(1)該國的政治、經(jīng)濟、社會環(huán)境穩(wěn)定;(2)該國的人口增長數(shù)由人口的生育,死亡引起;(3)人口數(shù)量化是連續(xù)的。
59、基于上述假設,我們認為人口數(shù)量是時間函數(shù)。
60、建模思路是根據(jù)給出的數(shù)據(jù)資料繪出散點圖,然后尋找一條直線或曲線,使它們盡可能與這些散點吻合,該直線或曲線就被認為近似地描述了該國人口增長規(guī)律,從而進一步作出預測。
61、 通過上題的研究,既復習鞏固了函數(shù)知識更培養(yǎng)了學生的數(shù)學建模能力和實踐能力及創(chuàng)新意識。
62、在日常教學中注意訓練學生用數(shù)學模型來解決現(xiàn)實生活問題;培養(yǎng)學生做生活的有心人及生活中“數(shù)”意識和觀察實踐能力,如記住一些常用及常見的數(shù)據(jù),如:人行車、自行車的速度,自己的身高、體重等。
63、利用學校條件,組織學生到操場進行實習活動,活動一結(jié)束,就回課堂把實際問題化成相應的數(shù)學模型來解決。
64、如:推鉛球的角度與距離關(guān)系;全班同學手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。
65、 四、培養(yǎng)學生的其他能力,完善數(shù)學建模思想。
66、 由于數(shù)學模型這一思想方法幾乎貫穿于整個中小學數(shù)學學習過程之中,小學解算術(shù)運用題中學建立函數(shù)表達式及解析幾何里的軌跡方程等都孕育著數(shù)學模型的思想方法,熟練掌握和運用這種方法,是培養(yǎng)學生運用數(shù)學分析問題、解決問題能力的關(guān)鍵,我認為這就要求培養(yǎng)學生以下幾點能力,才能更好的完善數(shù)學建模思想: (1)理解實際問題的能力; (2)洞察能力,即關(guān)于抓住系統(tǒng)要點的能力; (3)抽象分析問題的能力; (4)“翻譯”能力,即把經(jīng)過一生抽象、簡化的實際問題用數(shù)學的語文符號表達出來,形成數(shù)學模型的能力和對應用數(shù)學方法進行推演或計算得到注結(jié)果能自然語言表達出來的能力; (5)運用數(shù)學知識的能力; (6)通過實際加以檢驗的能力。
67、 只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
68、 例2:解方程組 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本題若用常規(guī)解法求相當繁難,仔細觀察題設條件,挖掘隱含信息,聯(lián)想各種知識,即可構(gòu)造各種等價數(shù)學模型解之。
69、 方程模型:方程(1)表示三根之和由(1)(2)不難得到兩兩之積的和(XY+YZ+ZX)=1/3,再由(3)又可將三根之積(XYZ=1/27),由韋達定理,可構(gòu)造一個一元三次方程模型。
70、(4)x,y,z 恰好是其三個根 t3-t2+1/3t-1/27=0 (4) 函數(shù)模型: 由(1)(2)知若以xz(x+y+z)為一次項系數(shù),(x2+y2+z2)為常數(shù)項,則以3=(12+12+12)為二次項系數(shù)的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2為完全平方函數(shù)3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也適合(3) 平面解析模型 方程(1)(2)有實數(shù)解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點后者有公共點的充要條件是圓心(O、O)到直線x+y的距離不大于半徑。
71、 總之,只要教師在教學中通過自學出現(xiàn)的實際的問題,根據(jù)當?shù)丶皩W生的實際,使數(shù)學知識與生活、生產(chǎn)實際聯(lián)系起來,就能增強學生應用數(shù)學模型解決實際問題的意識,從而提高學生的創(chuàng)新意識與實踐能力。
72、數(shù)學建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應用領域越來越廣泛,人們身邊的數(shù)學內(nèi)容越來越豐富。
73、強調(diào)數(shù)學應用及培養(yǎng)應用數(shù)學意識對推動素質(zhì)教育的實施意義十分巨大。
74、數(shù)學建模在數(shù)學教育中的地位被提到了新的高度,通過數(shù)學建模解數(shù)學應用題,提高學生的綜合素質(zhì)。
75、本文將結(jié)合數(shù)學應用題的特點,把怎樣利用數(shù)學建模解好數(shù)學應用問題進行剖析,希望得到同仁的幫助和指正。
76、 一、數(shù)學應用題的特點 我們常把來源于客觀世界的實際,具有實際意義或?qū)嶋H背景,要通過數(shù)學建模的方法將問題轉(zhuǎn)化為數(shù)學形式表示,從而獲得解決的一類數(shù)學問題叫做數(shù)學應用題。
77、數(shù)學應用題具有如下特點: 第一、數(shù)學應用題的本身具有實際意義或?qū)嶋H背景。
78、這里的實際是指生產(chǎn)實際、社會實際、生活實際等現(xiàn)實世界的各個方面的實際。
79、如與課本知識密切聯(lián)系的源于實際生活的應用題;與模向?qū)W科知識網(wǎng)絡交匯點有聯(lián)系的應用題;與現(xiàn)代科技發(fā)展、社會市場經(jīng)濟、環(huán)境保護、實事政治等有關(guān)的應用題等。
80、 第二、數(shù)學應用題的求解需要采用數(shù)學建模的方法,使所求問題數(shù)學化,即將問題轉(zhuǎn)化成數(shù)學形式來表示后再求解。
81、 第三、數(shù)學應用題涉及的知識點多。
82、是對綜合運用數(shù)學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關(guān),很難將問題正確解答。
83、 第四、數(shù)學應用題的命題沒有固定的模式或類別。
84、往往是一種新穎的實際背景,難于進行題型模式訓練,用“題海戰(zhàn)術(shù)”無法解決變化多端的實際問題。
85、必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。
86、因此它具有廣闊的發(fā)展空間和潛力。
87、 二、數(shù)學應用題如何建模 建立數(shù)學模型是解數(shù)學應用題的關(guān)鍵,如何建立數(shù)學模型可分為以下幾個層次: 第一層次:直接建模。
88、 根據(jù)題設條件,套用現(xiàn)成的數(shù)學公式、定理等數(shù)學模型,注解圖為: 將題材設條件翻譯 成數(shù)學表示形式 應用題 審題 題設條件代入數(shù)學模型 求解 選定可直接運用的 數(shù)學模型 第二層次:直接建模。
89、可利用現(xiàn)成的數(shù)學模型,但必須概括這個數(shù)學模型,對應用題進行分析,然后確定解題所需要的具體數(shù)學模型或數(shù)學模型中所需數(shù)學量需進一步求出,然后才能使用現(xiàn)有數(shù)學模型。
90、 第三層次:多重建模。
91、對復雜的關(guān)系進行提煉加工,忽略次要因素,建立若干個數(shù)學模型方能解決問題。
92、 第四層次:假設建模。
93、要進行分析、加工和作出假設,然后才能建立數(shù)學模型。
94、如研究十字路口車流量問題,假設車流平穩(wěn),沒有突發(fā)事件等才能建模。
95、 三、建立數(shù)學模型應具備的能力 從實際問題中建立數(shù)學模型,解決數(shù)學問題從而解決實際問題,這一數(shù)學全過程的教學關(guān)鍵是建立數(shù)學模型,數(shù)學建模能力的強弱,直接關(guān)系到數(shù)學應用題的解題質(zhì)量,同時也體現(xiàn)一個學生的綜合能力。
96、 3.1提高分析、理解、閱讀能力。
97、 閱讀理解能力是數(shù)學建模的前提,數(shù)學應用題一般都創(chuàng)設一個新的背景,也針對問題本身使用一些專門術(shù)語,并給出即時定義。
98、如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了“減薄率”這一專門術(shù)語,并給出了即時定義,能否深刻理解,反映了自身綜合素質(zhì),這種理解能力直接影響數(shù)學建模質(zhì)量。
99、 3.2強化將文字語言敘述轉(zhuǎn)譯成數(shù)學符號語言的能力。
100、 將數(shù)學應用題中所有表示數(shù)量關(guān)系的文字、圖象語言翻譯成數(shù)學符號語言即數(shù)、式子、方程、不等式、函數(shù)等,這種譯釋能力是數(shù)學建成模的基礎性工作。
101、 例如:一種產(chǎn)品原來的成本為a元,在今后幾年內(nèi),計劃使成本平均每一年比上一年降低p%,經(jīng)過五年后的成本為多少? 將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5 3.3增強選擇數(shù)學模型的能力。
102、 選擇數(shù)學模型是數(shù)學能力的反映。
103、數(shù)學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學能力的強弱。
104、建立數(shù)學模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。
105、結(jié)合教學內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學模型列表: 函數(shù)建模類型 實際問題 一次函數(shù) 成本、利潤、銷售收入等 二次函數(shù) 優(yōu)化問題、用料最省問題、造價最低、利潤最大等 冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù) 細胞分裂、生物繁殖等 三角函數(shù) 測量、交流量、力學問題等 3.4加強數(shù)學運算能力。
106、 數(shù)學應用題一般運算量較大、較復雜,且有近似計算。
107、有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。
108、所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
109、 利用數(shù)學建模解數(shù)學應用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學生發(fā)散思維能力是很有益的,是提高學生素質(zhì),進行素質(zhì)教育的一條有效途徑。
110、同時數(shù)學建模的應用也是科學實踐,有利于實踐能力的培養(yǎng),是實施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
本文分享完畢,希望對大家有所幫助。
標簽:
免責聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!